∫0π/2sinxdx=∫0π/2cosx=1
∫0π/2sin0xdx=∫0π/2cos0x=π/2
∫0π/2sinnxdx=∫0π/2cosnxdx
∫0π/2sinnxdx∫0π/2sinnxdx=−∫0π/2sinn−1xdcosx=−(sinn−1xcosx0π/2−∫0π/2cosxd(sinn−1x))=(n−1)∫0π/2sinn−2xcos2xdx=(n−1)∫0π/2sinn−2xdx−(n−1)∫0π/2sinnxdx⇓=nn−1∫0π/2sinn−2xdx
∫0π/2sin2nxdx=2n2n−12n−22n−3...212π∫0π/2sin2n+1xdx=2n+12n2n−12n−2...321
∫0πsinnxdx=∫0π/2sinnxdx+∫π/2πsinnxdx