=∫1−cos2x−dcosx=−∫21(1+cosx1+1−cosx1)dcosx=−21ln1−cosx1+cosx+C=−lnsinx1+cosx+C
=∫tan2xdtanx=−tanx1+C
有理分式裂项是可以做的
=∫sin4x−dcosx=−∫(1−cos2x)2dcosx=−∫((t−1)2A+t−1B+(t+1)2C+t+1D)dx=−∫((t−1)21/4+t−1−1/4+(t+1)21/4+t+11/4)dx=−41(−t−11−lnt−1−t+11+lnt+1)+C=−41(−t2−12t+lnt−1t+1)+C=−41(sin2x2cosx+lncosx−1cosx+1)+C
或者可以采用分部积分
=∫sinx−1dsinxcosx=−sin2xcosx+C−∫sinxcosxdsinx−1=−sin2xcosx+C−∫sin3xcos2xdx=−sin2xcosx+C−∫sin3x1−sin2xdx=−sin2xcosx+C−∫sin3x1dx+∫sinx1dx=−2sin2xcosx−21lnsinx1+cosx+C
=∫sin2x−1dsinxcosx=−sin3xcosx+C−∫sinxcosxdsin2x−1=−sin3xcosx+C−∫sin4x2cos2xdx=−sin3xcosx+C−2∫sin4x1−sin2xdx=−sin3xcosx+C−2∫sin4x1dx+∫sin2x2dx=−3sin3xcosx−3tanx2+C
可以看到更高次项同理
=∫cosnxsinn−2x(1−cos2x)dx=∫tann−2xdtanx+∫tann−2xdx=n−1tann−1x+∫tann−2xdx+C
形成递归,边界分别为
- ∫tanxdx=−lncosx+C
- ∫dx=x+C