∫1+x41+x2dx=∫(1+x2)2−2x21+x2=∫2+2x2−22x1+2+2x2+22x1dx=∫(2x−1)2+11+(2x+1)2+11dx=21(arctan(2x−1)+arctan(2x+1))+C=21arctan(2−2x22x2)+C
f′(0)=limxf(x)−f(0)=limx2g(x)−g(0)=limxg′(ξ)−g′(0)=limξg′(ξ)−g′(0)xξ=g′′(0)limxξ
∫cosx+2sinxcosxdx=∫cosx+2sinxcosx−1/2cosx−sinx+21dx=∫cosx+2sinx21d(cosx+2sinx)+21x=21(ln(cosx+2sinx)+x)+C
∫x21+2xe−2xdx=−∫dxe−2x